Тайваньская компания 42Ark и американский производитель «умных» кормушек CatFi Box используют камеры видеонаблюдения для распознавания кошачьего лика
Немецкий электротехник Вальтер Брух в 1941 году установил CCTV-систему (Сlosed Circuit Television — система телевидения замкнутого контура) на полигоне, где испытывали ракеты «Фау-2». Это первый известный в истории случай использования видеонаблюдения на практике. Оператор должен был неотлучно сидеть перед монитором. Так продолжалось до 1951 года, пока не появились первые VTR (VideoTape Recorder) устройства, записывающие изображение на магнитную ленту. Запись на носитель не избавила оператора от необходимости участвовать в процессе. Опознание лиц, определение местоположения объектов, даже детекция движения – все эти функции выполнял человек, сидящий перед монитором в режиме реального времени или изучающий постфактум архив видео. Колесо прогресса катится дальше. Видеонаблюдение получило видеоаналитку, полностью изменившую процесс работы с системой. Помните историю про кота и нейросеть глубокого обучения? Да, это тоже часть видеоаналитики, но крохотная. Сегодня расскажем о технологиях, которые кардинально меняют мир CCTV-систем. Детекция очередей и бета-тест
Первая IP-камера в мире Neteye 200, созданная в 1996 году компанией Axis
Видеонаблюдение зарождалось как охранная замкнутая система, предназначенная только для решения вопросов безопасности. Ограничения аналогового видеонаблюдения не позволяли использовать оборудование как-то иначе. Интеграция видеонаблюдения с цифровыми системами открыла возможность автоматизировано получать различные данные, анализируя последовательность изображений. Важность трудно переоценить: в обычном случае после 12 минут непрерывного наблюдения оператор начинает пропускать до 45% событий. И до 95% потенциально тревожных событий будет пропущено уже после 22 минут непрерывного наблюдения (по результатам исследования IMS Research, 2002). Появились сложные алгоритмы анализа видео: подсчет посетителей, подсчет конверсии, статистика кассовых операций и многое другое. В этой системе исчезает оператор наблюдения – мы оставляем компьютеру возможность «смотреть» и делать выводы. Самой простой пример умного видеонаблюдения – детекция движения. Не так важно есть ли встроенный детектор в самой камере – если вы установите на компьютер, к примеру, софт Ivideon Server, то детекор движения будет использоваться программный. Один детектор способен заменить сразу несколько операторов видеонаблюдения. А уже в 2000-е начали появляться первые системы видеоаналитики, способные распознавать объекты и события в кадре. У Ivideon сейчас в разработке несколько модулей видеоаналитики – с тех пор, как мы выпустили OpenAPI, дело пошло быстрее за счет интеграции с партнерами. Часть проектов пока в закрытом тестировании, но кое-что уже готово. Это, во-первых, интеграция с кассами для контроля за кассовыми операциями (пока на базе iiko и Штрих-М). Во-вторых, разработан детекор очередей. У нас был счетчик Ivideon Counter, определявший количество клиентов в зале. Аналитика позволила уйти от специального оборудования в сторону облачных вычислений. Теперь нам не нужна специфическая камера – подойдет любая камера видеонаблюдения с разрешением 1080p+. Сейчас мы хотим не просто считать людей, а определять очереди. Поэтому готовы любому магазину, ТЦ или офису, где ходят и стоят люди, образуя очереди, предоставить бесплатную камеру для теста детекции очереди. Напишите нам, чтобы принять участие в проекте. Кроме того, Ivideon работает с технологиями распознавания лиц. Кто и как распознает
Технология DeepFace проходит проверку Facebook на примере распознавания эмоционального лица Сильвестра Сталлоне
Над решениями в этой области работают Apple, Facebook, Google, Intel, Microsoft и другие технологические гиганты. Комплексы видеонаблюдения с автоматическим распознаванием лиц пассажиров установлены в 22 аэропортах США. В Австралии занимаются разработкой биометрической системы распознавания лиц и отпечатков пальцев в рамках программы, призванной автоматизировать паспортный и таможенный контроль. Крупнейшая китайская интернет-компания Baidu провела успешный эксперимент по отказу от билетов с помощью технологии распознавания лиц с точностью 99,77%, при длительности съемки и распознавания – 0,6 секунды. На входах в парк установлены стенды с планшетами и специальные рамки, которые ведут съемку. Когда турист приходит в парк впервые, система его фотографирует, чтобы в дальнейшем использовать функцию распознавания лиц по фото. Новые снимки сравниваются с фото из базы данных – так система определяет, есть ли у человека право на посещение. В Китае с технологиями вообще все очень хорошо. В 2015 году Alipay, оператор платформы онлайн-платежей, входящий в состав холдинга Alibaba, ввел в действие систему верификации платежей на базе Face++, облачной платформы распознавания лиц, созданной китайским стартапом Megvii. Система получила название Smile to Pay — она дает возможность пользователям Alipay платить за онлайн-покупки путем съемки селфи (Alipay определяет владельца по улыбке). UBER в Китае стал применять систему распознавания лиц водителей на базе Face++, чтобы противостоять мошенничеству, краже персональных данных и обеспечить дополнительную безопасность пассажиров. Но интереснее посмотреть не на зарубежные решения, а на сервисы, созданные в России. Эти технологии находятся гораздо ближе к конечному пользователю (если он из нашей страны), с ними можно познакомиться, в перспективе объединиться для использования в собственном продукте. Компаний, занимающихся распознаванием лиц, вокруг немало. Вспомним несколько, остающихся на слуху. Компания «Вокорд», основанная еще в 1999 году, в программе FaceControl 3D работает с синхронными изображениями со стереокамер, строит 3D-модель лица в кадре и автоматически ищет совпадение полученной модели с моделями в имеющейся базе данных. В 2016 году «Вокорд» стал использовать собственный математический алгоритм распознавания лиц, в основе которого лежат сверточные нейронные сети, благодаря чему их алгоритмы теперь работают с любой камерой видеонаблюдения. В компании утверждают, что могут распознавать лица (в размере 128х128 пикселей) людей, следующих в потоке. В конце 2016 года алгоритм Vocord DeepVo1 показал лучшие результаты в мировом тестировании идентификации, правильно распознав 75,127% лиц. Компания VisionLabs, основанная в 2012 году, победила в крупнейшем в России и Восточной Европе конкурсе технологических компаний GoTech, вошла в список финалистов европейской программы «Challenge UP!», призванной ускорить вывод на рынок решений и сервисов на базе концепции интернета вещей, привлекла многомиллионные инвестиции и уже внедряет свои продукты в коммерческий сектор. Недавно банк «Открытие» запустил систему распознавания лиц от VisionLabs с целью оптимизации обслуживания и времени ожидания клиентов в очереди. Ну и стоит прочитать замечательную историю, как специалисты из КРОК с помощью VisionLabs кота ловили. VisionLabs, показавшая один из лучших результатов по распознаванию и уровню ошибок, также работает с нейронными сетями, выявляющими специфические черты каждого лица, такие как разрез глаз, форма носа, рельеф ушной раковины и т.д. Их система Luna позволяет найти все эти особенности лица по фото в архивах. Другое решение компании, Face Is, распознав лицо клиента в магазине, находит его профиль в CRM-системе, узнает из нее историю покупок и интересы покупателя, и отправляет на телефон уведомление с персональным предложением о скидке на его любимую категорию товаров. Стартап Skillaz, занимающийся автоматизацией процесса найма сотрудников, и VisionLabs собираются в конце 2017 года представить систему компьютерного распознавания, которая будет оценивать поведение соискателей при найме. Проанализировав полученные данные, система будет делать выводы о профессиональных качествах человека и пригодности к должности. Полные характеристики системы «машинного найма» компании не раскрывают. Известно лишь, что будет оцениваться коммуникабельность кандидата, исходя из его ответов на определенный набор вопросов, задаваемых системой online-интервью. Нейросеть будет искать взаимосвязь поведения кандидата на картинке с камеры видеонаблюдения и степень выраженности у него той или иной компетенции. Сетка, представляющая собой доктора Лайтмана и Шерлока Холмса в одном лице, будет учитывать мимику кандидата, его жестикуляции, а также физиогномику. Тут стоит заметить, что метод определения типа личности человека, его душевных качеств, исходя из анализа внешних черт лица и его выражения, в современной психологической науке считается классическим примером псевдонауки. Как с этим противоречием справятся в новом продукте пока неясно.Слайд из презентации NTechLab, угнетающий Салмана Радаева
NTechLab начинали с приложения, которое определяло породу собак по фотографии. Позже они написали алгоритм FaceN, с которым осенью 2015 года приняли участие в международном конкурсе The MegaFace Benchmark. NTechLab одержала победу в двух номинациях из четырех, обойдя и команду Google (через год в этом же конкурсе победит «Вокорд», а NTechLab сместится на 4-ю позицию). Успех позволил им быстро реализовать сервис FindFace, ищущий людей по фотографиям во ВКонтакте. Но это не единственный способ применения технологии. На фестивале Alfa Future People, организованном «Альфа-Банком», с помощью FindFace посетители могли найти свои фотографии среди сотен других, отправив селфи чат-боту. Кроме того, NTechLab показали систему, способную в режиме реального времени распознавать пол, возраст и эмоции, используя изображение с видеокамеры. Система способна оценить реакцию аудитории в режиме реального времени, благодаря чему можно определить эмоции, которые испытывают посетители во время презентаций или трансляций рекламных сообщений. Все проекты NTechLab строятся на самообучающихся нейронных сетях. Путь Ivideon к видеоаналитике
Распознавание лиц – одна из самых сложных задач в области видеоаналитики. С одной стороны, вроде все понятно и давно используется. С другой стороны, решения идентификации в толпе людей все еще стоят очень дорого и не дают абсолютной точности. В 2012 году в Ivideon начали работу с алгоритмами видеоанализа. В тот год мы выпустили приложения для iOS и Android, вышли на зарубежные рынки, запустили децентрализованные сети CDN с серверами в США, Нидерландах, Германии, Кореи, России, Украине, Казахстане и стали единственным международным сервисом видеонаблюдения, работающим одинаково хорошо во всем мире. В общем, казалось, что сделать свою аналитику с блэк-джеком и распознаванием будет просто и быстро… мы были молоды, трава казалась зеленее, а воздух – сладким и томительным. [На тот момент мы рассматривали классические алгоритмы. Для начала нужно детектировать и локализовать лица на изображении: используем каскады Хаара, поиск регионов с текстурой, похожей на кожу и т.п. Допустим, нам надо найти первое попавшееся лицо и сопровождать только его в видеопотоке. Тут можно воспользоваться алгоритмом Лукаса-Канаде. Находим алгоритмом лицо и далее определяем в нём характерные точки. Сопровождаем точки с помощью алгоритма Лукаса-Канаде; после их пропадания считаем, что лицо исчезло из поля зрения. Получив характерные признаки лица, мы сможем сравнить его с признаками, заложенными в базе данных. Для сглаживания траектории движения объекта (лица), а также для предсказания его положения на следующем кадре используем фильтр Кальмана. Тут необходимо отметить, что фильтр Кальмана предназначен для линейных моделей движения. Для нелинейного же используется алгоритм Particle Filter (как вариант Particle Filter + алгоритм Mean Shift). Можно также использовать алгоритмы вычитания фона: библиотека с примерами реализации алгоритмов по вычитанию фона + статья по реализации легкого алгоритма вычитания фона ViBe. Кроме того, не стоит забывать один из самых распространенных методов Виолы-Джонса, реализованный в библиотеке компьютерного зрения OpenCV.
] Простое распознавание лиц – хорошо, но недостаточно. Нужно еще обеспечить устойчивое слежение за несколькими объектами в кадре даже в случае их совместного пересечения или временного «пропадания» за препятствием. Считать любое количество объектов, пересекающих определенную зону и учитывать направления пересечения. Знать, когда появляется и исчезает предмет/объект в кадре – навести мышкой на грязную чашку на столе и найти момент в видеоархиве, когда она там появилась и кто её оставил. В процессе слежения объект может измениться достаточно сильно (с точки зрения преобразований). Но от кадра к кадру эти изменения будут такими, что можно будет идентифицировать объект. Кроме того, мы хотели сделать универсальное облачное решение, доступное для всех – из самых требовательных пользователей. Решение должно было быть гибким и масштабируемым, поскольку мы сами не могли знать, за чем хочет следить и что хочет считать пользователь. Вполне возможно, что кто-нибудь предполагал бы сделать на базе Ivideon трансляцию тараканьих бегов с автоматическим определением победителя. Только спустя пять лет мы приступил к тестированию отдельных компонентов видеоаналитики – подробнее об этих проектах расскажем в новых статьях. P.S. Итак, мы ищем добровольцев для тестов детектора очередей. А также пользователей системы ШТРИХ-М для теста новой системы контроля кассовых операций. Пишите на почту или в комментариях.
Еще недавно охранные системы с опцией распознавания лиц казались чем-то фантастическим, а увидеть их можно было только в кино. Но за последние несколько лет многое изменилось. Появились новые разработки, которые изменили представление об охранных системах.
Качество и комфорт существования общества зависит от правильного подхода к организации персональной безопасности и защиты имущества. Не удивительно, что требования к защите постоянно растут. Одним из нововведений стало появление функции распознавания лиц. В чем ее особенности? Где она применяется? На каком принципе работает? Эти и другие вопросы подробно рассмотрим в статье.
Сферы применения
Пользу распознавания лиц сложно переоценить. Охранные системы с такой функцией применяются в различных сферах — при организации системы пропуска в крупных организациях, для поиска злоумышленников, защиты частных объектов и так далее.
Если говорить в целом, с помощью такой охранной системы удается решить следующие задачи:
- Организовать надежную и эффективную систему пропуска на проходной в компании или на других закрытых объектах. Для большей эффективности видеонаблюдение объединяется с турникетами. В результате удается быстро распознавать своих сотрудников и посторонних лиц.
- Создать систему защиты от краж в точках продаж и частных объектах. Не секрет, что различные магазины, торговые центры, супермаркеты и прочие заведения сталкиваются с проблемными клиентами, склонными к кражам. В большинстве случаев воровство осуществляется одними и теми же людьми. При наличии соответствующей базы функция распознавания лиц позволяет вовремя выявить человека и информировать охранника. В результате удается принять дополнительные меры по защите имущества.
- Организовать охранную систему, обеспечивающую защиту от проникновения посторонних в сооружения закрытого типа и частные домовладения. Даже при внимательном наблюдении охраннику не всегда удается отличать злоумышленника от другого объекта. Это особенно актуально, если камера установлена на участке с низким уровнем освещения. Монтаж специальных систем с функцией распознавания лиц помогает быстро определить человека даже в темноте. То, что неподвластно работнику охраны, с легкостью решается компьютерным модулем.
- Обеспечение фейс-контроля в ночных заведениях. Наличие рассматриваемых систем в клубах гарантирует 100-процентную защиту от «проблемных» посетителей.
Как это работает?
Наибольший интерес вызывает принцип работы системы, способной не только передавать изображение на монитор, но и распознавать лица людей. Задача специального модуля заключается в считывании информации, а также ее последующем сравнении с данными, которые имеются в базе. Такие комплексы способны идентифицировать лицо человека на удалении от камеры до 10 м.
Одна из особенностей системы — высокая «чувствительность», позволяющая распознавать личность даже при изменении внешности. Модуль невозможно сбить с помощью очков, изменения прически, бороды или других дополнительных элементов маскировки на лице. Это связано с тем, что анализируются не черты лица, как считают многие, а строение черепа, его биометрические параметры. Такие характеристики индивидуальны, как и отпечатки пальцев, что исключает вероятность ошибки.
Информация сканируется и обрабатывается в режиме реального времени. Достаточно посетителю повернуться лицом по направлению к сканеру, как система определяет личность и дает команды другим органам. Если модуль распознавания лиц связан с турникетами или другими устройствами блокировки, их срабатывание производится автоматически. Кроме того, в памяти сохраняется фотография подозрительного лица для дальнейшей обработки и анализа охраной.
Наибольшее распространение системы с функцией идентификации получили в крупных компаниях, где имеет место большая конкуренция. Не секрет, что от уровня безопасности зависит успех предприятия. Особенно это касается организаций, которые работают в оборонной сфере, занимаются разработкой новых проектов или биологическими исследованиями.
Задача системы заключается в сравнении работников и сверке лиц с имеющейся базой. Если человека нет в перечне, подается сигнал охранникам, после чего последние принимают меры по предотвращению проникновения постороннего лица на объект. При этом место выявления точно фиксируется на электронной карте, а сотрудники отдела безопасности в течение нескольких минут выявляют нарушителя.
Особенности установки
В процессе монтажа системы с опций распознавания лиц стоит учесть, что видеокамеры могут работать в одном из 2-х режимов — 2D или 3D. В первом случае анализ выполняется на базе плоского изображения, а двухмерные камеры обладают высокой чувствительностью к освещению. Из этого следует, что при установке 2D-камер стоит отдельное внимание уделять освещению охраняемого объекта и охвату защищаемых зон.
Что касается камер с 3D, они работают с трехмерным объектом на базе передаваемого устройством изображения. В этом случае можно не обращать внимания на уровень освещенности, ведь система хорошо справляется с возложенными на нее функциями даже в темноте. Единственная опасность в том, что текстура лица будет в незначительной степени искажена.
Какие виды таких систем существуют?
При выборе систем, имеющих функцию распознавания лиц, важно ориентироваться на несколько факторов — цели, задачи и место монтажа. Кроме того, стоит брать во внимание виды таких устройств:
- Системы обнаружения. Видеокамера имеет разрешение от 1 Мп, а фокусное расстояние составляет от 1 мм. Работа устройства направлена на фиксацию факта проникновения посторонних субъектов на защищаемые объекты. Особенность сканера заключается в способности отличить человека от животного, но идентифицировать личность не получится.
- Система распознавания. Этот комплекс отличается большей сложностью, а в него входит 2-мегапиксельная камера с фокусным расстоянием от шести миллиметров. Задача заключается в распознавании лиц и их определению по принципу «свой-чужой». В случае просмотра видео четкости у картинки не будет. Система выявляет посторонние лица, но в случае кражи найти вора по сохраненному изображению будет сложно
- Устройства идентификации. При организации такой системы применяются камеры с разрешением от 2 МП и более, имеющие фокусное расстояние больше восьми миллиметров. Такие комплексы способны выполнять функции, рассмотренные выше. Плюс заключается в том, что полученного изображения достаточно для опознавания вора по фотографии. Имеющийся кадр можно использовать в процессе расследования и даже передавать в суд.
В приведенном описании рассмотрены минимальные требования для охранных систем в отношении фокусного расстояния и разрешения «картинке». Это значит, что при покупке оборудования стоит ориентироваться на изделия с лучшими характеристиками, обеспечивающими более качественную съемку. Например, для систем распознавания больше подойдут камеры на 2 МП, имеющие фокусное расстояние, равное 8 мм. Что касается комплексов для идентификации, здесь рекомендации еще более серьезные. Желательно использовать видеокамеры с разрешением в 5 МП и 12-миллиметровым фокусным расстоянием.
Подведем краткие итоги:
- Видеокамера с разрешением 1МП позволяет отличить человека от животного. При этом идентифицировать субъекта не получится.
- Для фиксации лиц и сравнения с имеющейся базой устройство для фиксации должно иметь разрешение от 2-х МП и более.
- Для идентификации человека желательно применять 5-мегапиксельную камеру.
Система распознавания лиц компании NTechLab. Фото: NtechLab
Многие слышали про успехи системы видеонаблюдения в Китае, которая объединяет более 170 млн видеокамер, подключённых к единой системе распознавания лиц. К 2020 году количество камер увеличится до 400 млн, плюс видеонаблюдение заработает через другие устройства, в том числе через «умные» очки полицейских. Благодаря тотальной слежке власти надеются, что смогут быстро определять местоположение любого преступника, который находится в федеральном розыске. Разумеется, доступ к такой системе даёт массу иных преимуществ. Аналогичная система развернётся в Москве. В этом году власти собираются подключить к системе распознавания лиц все уличные видеокамеры, сообщают государственные СМИ. Таким образом, по темпам интеграции Москва не отстаёт от Китая. Подрядчика для внедрения распознавания лиц выберут на тендере. Один из претендентов — компания NTechLab и технология FindFace, с которой проводился эксперимент полтора года назад. Тогда эксперимент признали успешным. Кроме неё, в тендере участвует IVA Cognitive и несколько других компаний. «Осталось несколько претендентов, в том числе мы. Возможно, выберут одного или организуют что-то вроде консорциума из нескольких компаний. Поделят камеры и посмотрят, кто как справляется. Таким образом, сохранится конкуренция, технология будет развиваться», — рассказал Алексей Цессарский, генеральный директор компании IVA Cognitive, разрабатывающей систему видеоаналитики IVA CV. Артём Кухаренко, основатель компании NtechLab, говорит, что в текущих настройках вероятность ложных срабатывания системы — 0,00001%, то есть один на десять миллионов. Цессарский приводит оценку точности до 99% (о путанице в метриках и некорректном использовании терминов читайте статью «Правда и ложь систем распознавания лиц»). На самом деле все параметры регулируются. Если мы хотим минимизировать количество ложноположительных срабатываний, то у нас будет много ложноотрицательных, то есть система будет пропускать (не узнавать) многих реальных преступников. И наоборот, если мы хотим на 100% распознавать всех преступников, то есть минимизировать количество ложноотрицательных ошибок, то неизбежно вместе с преступниками задержим множество невиновных граждан за счёт максимизации ложноположительных ошибок. Разумеется, для городских систем видеонаблюдения предпочтительнее первый вариант.Турникеты на станции метро «Октябрьское Поле» в Москве подключены к системе распознавания лиц. Фото: РИА Новости / Евгений Одиноков
Технологию распознавания проверили во время чемпионата мира по футболу, где она «помогла задержать более ста правонарушителей, раскрыть кражу спонсорского кубка и предотвратить давку в одной из фанзон». Кроме того, эксперименты проходили на Казанском вокзале Москвы, на стадионе «Петровский» в Санкт-Петербурге. В начале 2018 года пилотный проект по тестированию системы распознавания лиц запустили и в Домодедово. Похожие системы действуют в Альметьевске (Татарстан) и других городах. В Татарстане в прошлом году с помощью системы видеонаблюдения раскрыли 1971 преступление. По данным PwC, в Москве плотность видеокамер составляет 54,6 штуки на квадратный километр. И Москва стала одним из первых мегаполисов, который внедряет систему распознавания лиц в городской сети видеонаблюдения. «Технологии анализа видеопотока активно применяются в рамках концепции „умный город” по всему миру, этот рынок постоянно растет. Москва не просто оказалась в тренде, а показала себя суперпрогрессивной столицей — с точки зрения как масштаба, так и уровня решений», — говорил в 2017 году генеральный директор NTechLab Михаил Иванов. Наверное, эта оценка актуальна и сегодня. После интеграции всех уличных камер в единую сеть эффективность работы системы значительно увеличится: «Видеопоток со всех подключенных камер анализируется, лица распознаются и сохраняются некоторое время в базе. Далее фото человека из списка разыскиваемых загружается в систему и выполняется поиск среди накопленной истории, — объяснил Цессарский один из сценариев работы системы. — Программа показывает, какие камеры и когда видели этого человека. Можно восстановить его маршрут, определить, где и когда он был в последний раз, загрузить видео оттуда и посмотреть, что он там делал». По другому сценарию, система в реальном времени сравнивает картинку со всех видеокамер с фотографиями из базы — и в случае положительного срабатывания в полицию поступает мгновенное уведомление. Как видим, первый сценарий представляет собой некое подобие закона Яровой, только в применении к передвижениям «человеческого трафика». До конца текущего года в Москве будет работать более 174 000 камер. Сеть видеонаблюдения объединяет подъездные видеокамеры (95% подъездов жилых домов в столице), камеры на территории и в зданиях школ и детских садов, на станциях МЦК, стадионах, остановках общественного транспорта и автовокзалах, в парках, подземных переходах, сообщает официальный портал мэра и правительства Москвы. «Внедрение видеоаналитики является мощным драйвером повышения эффективности как частных, так и городских систем видеонаблюдения. У жителей города появился дополнительный уровень защиты, — заявил руководитель Департамента информационных технологий Москвы Артём Ермолаев. — Разумеется, все эти возможности должны внедряться очень ответственно. Наш приоритет — баланс между конфиденциальностью и безопасностью, и мы придерживаемся строгой внутренней политики контроля, гарантирующей соблюдение прав граждан». «Установка в каком-то районе города камер наблюдений уменьшает количество преступлений на 20% или даже 40%, — говорит Алексей Цессарский. Все зависит от того, насколько криминогенной была обстановка. Если человек знает, что его распознают на видео и найдут, он дважды подумает, прежде чем решится на правонарушение». Распознавание лиц людей по всему городу предоставляет уникальные возможности сотрудникам правоохранительных органов. Они могут ввести в поиск фотографию человека — и узнать, где он сейчас находится, по какому маршруту передвигается и т.д.Пример идентификации
Программное обеспечение NTechLab использует нейросети и машинное обучение. Именно эта фирма разработала известное приложение FindFace. В своё время СМИ облетели несколько историй об этом сервисе, который быстро узнаёт личность почти любого прохожего, достаточно сделать его фото и загрузить в приложение на смартфоне. Программу использовали даже для деанонимизации российских порноактрис — по кадрам из фильмов пользователи находили этих девушек в социальных сетях, устанавливая личность по школьным фотографиям и т.д. Правоохранительные органы могут провернуть этот фокус и сейчас, но уже не по фотографиям из социальных сетей, а в целой системе видеонаблюдения Москвы. Эффективность нейросети NTechLab подтверждена независимыми сравнительными тестами систем распознавания лиц, которые проводили Министерство торговли США и Вашингтонский университет (конкурс FaceScrub). «Наша технология считается лучшей в мире по качеству работы с самой сложной по метрике NIST базой изображений wild exploration. Она включает фото людей, снятые в стихийных условиях и с разным разрешением, причём лица могут быть частично закрыты», — пояснил основатель NTechLab Арт`м Кухаренко. Но в камерах видеонаблюдения точность распознавания гораздо ниже, чем в тестах: «Камеры городского видеонаблюдения динамические: они двигаются вправо-влево, приближаются и удаляются. В таких условиях добиться даже распознавания 60–70% изображений крайне сложно. Результат в 30% уже космический», — говорил Артём Ермолаев в комментарии для РБК полтора года назад.Демо-зона Городской системы видеонаблюдения Москвы в павильоне «Умный город» на ВДНХ
По его словам, мощности системы пока не хватает для тотальной слежки и распознавания всех горожан в реальном времени. То есть система не может составлять пофамильные списки всех, кто входит в каждый подъезд каждого дома: для этого требуется слишком много ресурсов. Пока что она может только найти на всех видеокамерах отдельных людей, чьи лица загружены в базу данных. В 2017 году Артём Ермолаев сказал, что московское правительство тратит около 5 млрд руб ($86 млн) в год на поддержание системы видеонаблюдения, а если к системе распознавания лиц подключить все 170 000 камер, то эта сумма утроится. Видео с камер передаётся в единый центр хранения и обработки данных (ЕЦХД) и хранится пять суток. Кроме распознавания лиц, сейчас актуальной задачей разработчиков является анализ жестов, поз. Это позволит оценить намерения группы людей и предотвратить опасную ситуацию. «Речь идет о паттернах поведения человека. Систему можно натренировать на поиск скопления людей там, где обычно по статистике этого не должно быть, или выявление подозрительных действий: кто-то очень быстро размахивает руками, бежит, выхватывает предмет, напоминающий оружие. Обнаружив в видеопотоке определенные паттерны, программа отправляет уведомление. Это, по сути, мониторинг потенциально опасных ситуаций», — рассказал Цессарский. По словам Кухаренко, если использовать вместе несколько сценариев — поиск лиц в розыске, подсчёт людей и оценку поведения — это выведет безопасность массовых мероприятий на принципиально новый уровень. Кроме того, в будущем это открывает двери для полноценной меритократии. Например, в Китае сейчас разворачивают общенациональную систему социального кредита — каждый гражданин получает определённый рейтинг, в зависимости от своих действий в обществе. Хорошие, добропорядочные и честные граждане будут иметь высокий социальный рейтинг. Вороватые, эгоистичные граждане — низкий рейтинг, если они не делают ничего хорошего для общества. От социального рейтинга зависит, насколько этому человеку можно доверять, можно ли ему выдавать вещи в прокат без залога, кредит на большую сумму и т. д. Если человек совершает преступление — от его социального рейтинга отнимают определённое количество баллов. Если перевёл бабушку через дорогу — начисляют дополнительные баллы. Люди с высоким социальным рейтингом — умные, добрые и всеми любимые граждане — получат почёт, уважение, спецобслуживание в общественных учреждениях и т.д. В сентябре 2016 года правительство Китая опубликовало уточнённый перечень санкций, которым будут подвергаться обладатели низких рейтингов:
- запрет на работу в госучреждениях;
- отказ в соцобеспечении;
- особо тщательный досмотр на таможне;
- запрет на занятие руководящих должностей в пищевой и фармацевтической промышленности;
- отказ в авиабилетах и спальном месте в ночных поездах;
- отказ в местах в люксовых гостиницах и ресторанах;
- запрет на обучение детей в дорогих частных школах.
Возможно, в будущем люди с большим социальным рейтингом даже будут иметь больший вес при голосовании на выборах. То есть голос высокообразованного семьянина с тремя детьми на выборах не будет равен голосу пьяницы с низким IQ, как сейчас, а будет в несколько раз весомее. Таким образом можно отказаться от нынешней диктатуры необразованного большинства и перейти к более «продвинутым» формам демократии. По большому счёту, это в каком-то роде реализация идеи меритократии, когда личные достижения человека зависят лишь от его способностей, трудолюбия, жизненных установок и нравственности. Система тотального видеонаблюдения с распознаванием лиц может органически вписаться в концепцию социального рейтинга. Постоянно отслеживая все действия каждого человека, система может автоматически оценивать эти действия — и изменять социальный рейтинг каждого человека в реальном режиме времени. Разумеется, ради высокого рейтинга человеку придётся частично пожертвовать своей приватностью, отказаться от ношения чёрных очков, кепок и других маскирующих элементов одежды. Контролирующие органы должны внимательно следить, чтобы система не использовалась для злоупотреблений. Наверняка найдётся много желающих использовать этот мощный инструмент в личных целях: проследить за своей женой, девушкой или любым другим произвольным человеком, который не совершил никакого преступления (как развлекались агенты АНБ, просматривая фотографии с веб-камер невинных девушек). Вероятно, доступ к распознаванию лиц должен быть строго ограничен: только для конкретных единичных операций по судебному ордеру. Сейчас доступ к системе городского наблюдения имеют около 16 тыс. пользователей — это сотрудники правоохранительных органов, государственных и муниципальных организаций. 10 тыс. сотрудников органов исполнительной власти и 6 тыс. представителей правоохранительных органов могут просматривать видео в реальном времени и изучать архивы записей на рабочих местах и с мобильных устройств. У каждого из них свой уровень доступа, что «позволяет сохранить конфиденциальность жителей города», сказали в департаменте информационных технологий Москвы. Насколько качественно сохраняется конфиденциальность граждан РФ — хорошо видно по активности на форумах, где происходит торговля персональными данными россиян. Любой желающий может заказать пробив данных владельца по номеру телефона: ФИО, паспортные данные, адрес. Можно купить отслеживание местоположения человека по вышкам сотовой связи, история местоположений, детализация звонков, детализацию SMS. Продаётся информация из государственных баз «Магистраль», «Сирена», «Граница», «Мигрант», «Кронос», «Спарк», «Поток», комплексных баз ИБДР-ИБДФ, подробные выписки из банков по счетам физлиц и юрлиц, и так далее.